

STRATEGY FOR CVWMC LANDFILL GAS UTILIZATION

Presented by: Paresh Thanawala, Sr. Project Manager, Tetra Tech June 19, 2014

PURPOSE

Benefits Options Seek Input

Overview of CVRD landfill gas collection system

Options Seek Input

Developing the preferred option

BENEFITS

Enhance corporate image

Effective use of energy

Improved air quality

Reduce potential for safety hazards

Generate revenue

Carbon offsets

Reduce potential for adverse health impacts

LANDFILL GAS

Generated due to anaerobic oxidation (oxygen –strived) of wastes

BC regulations require capture and utilization

LFG is a medium-grade fuel. Utilization is an environmentally benign use of energy

Meets "integrated resource recovery" (IRR) objective of the Solid Waste Management Plan (CS-SWMP)

BC REGULATIONS

Landfills > 1,000 t/yr. of methane generation require capture and LFG Management Plan. CVRD has prepared and submitted the plan to the MoE

Minimum capture efficiency 75%

Design Guidelines: Landfill Gas Management Facilities, S7, Landfill Gas Management Regulation. CVRD has prepared detailed design in accordance with these guidelines

http://www.env.gov.bc.ca/epd/mun-waste/waste-solid/landfills/pdf/Design-guidelines-final.pdf

LFG generation assessment using BC MoE assessment spreadsheet

Carbon Offsets now dealt by the Climate Action Secretariat (previously by BC Carbon Pacific Trust)

TYPICAL GAS QUALITY AND QUANTITY

Compound	Mol %
Methane (CH₄)	60
Carbon dioxide (CO ₂)	37
Nitrogen (N ₂)	1.9
Oxygen (O ₂)	0.6
Other trace gases	1.1

ESTIMATED LFG GENERATION RATE (BASED ON BC MOE MODEL)

Comox Strathcona Waste Management

LANDFILL GAS COLLECTION SYSTEM

Design/Plan in accordance with BC LFG Management Regulation

Aim to achieve >75% capture efficiency

LFG generation assessment (Quantity)

LFG quality assessment (Quality)

Wells,
laterals,
headers,
blower, flare,
condensate
handling,
monitoring,
controls

PROPOSED SCHEDULE OF LFG COLLECTION SYSTEM

Tender, Fall 2014

₹ 5

Construction, January – August, 2015

Commission, September, 2015

Prove >75% capture efficiency/additional data on LFG, October – December, 2015

Fully operational, January 1, 2016 (required by BC Landfill Gas Protocol), or sooner

CVWMC LFG ALTERNATIVE END USE OPTIONS REVIEWED

POWER: Micro turbines, reciprocating engines

<u>Heat</u>: Greenhouse, boilers, furnaces, additional power (Organic Rankin Cycle). No known end use of rejected heat

CHP: Combined Heat and Power

<u>Vehicle Fleet</u>: Convert to CNG (light duty vehicles or LNG (heavy duty vehicles). Not feasible for CVRD

Sell Gas: Clean up (CO₂, H₂O, N₂, H₂S) to P/L specifications and tie-in to BC Fortis P/L

Price of NG @ ~ \$14/GJ on the island makes Fortis BC P/L option economically attractive

PRELIMINARY COSTS LFG UTILIZATION OPTIONS

Costs	Engines	MT
Capital technology	\$6,038,435	\$6,780,541
Capital treatment	\$1,650,000	\$1,650,000
Total Capital	\$7,688,435	\$8,430,541
Annual O/M, Technology	\$291,853	\$196,632
Annual O/M, TReatment	\$500,000	\$500,000
Total Annual O/M	\$791,853	\$696,632
Electrcity Sold	\$1,945,684	\$1,638,602
Net annual return	\$1,153,831	\$941,970
Simple Payback (SPB), years	6.66	8.95

Sell Gas to Fortis	~ Costs
Capital (gas treatment)	\$2,550,000
Total Capital	\$2,550,000
Capital including 25% contingency	\$3,187,500
Annual O/M	\$845,000
Revenue from gas @ \$12/GJ	\$1,639,434
Net profit	\$794,434
Simple Payback (SPB), years	4.01

- Costs presented are for the future beneficial LFG utilization project (to be developed)
- Additionally, the CVRD will invest in the LFG collection system
- The LFG collection system is a legislated requirement

LANDFILL GAS CLEAN UP

LFG to be cleaned up to Westcoast Energy Pipeline (P/L) specifications or specs for other technology

Commission option

Removal of contaminants

FORTIS PIPELINE AT BEVAN/CUMBERLAND ROAD

Comox Strathcona Waste Management

BUILDING PARTNERSHIP FORTIS PIPELINE OPTION

Initial discussions indicate synergies for business case/partnership

Submit Expression of Interest (EOI) in Fall, 2014

Business case – reliability of supply, quality of LFG (meet Waste-coast Energy P/L specs)

Technical feasibility, concept level design

Establish project economics: production cost < approved customer cost

Engage stakeholders - Seek Input

Sources for capital + external funding

Mitigation of any potential risks

MOU/Agreement -ownership, DBO, capital, GHG offsets

Regulatory approvals

Timeline for moving from concept to tie-in to the P/L

CARBON OFFSETS POTENTIAL

CH₄ removal is the main contributor to carbon offsets/credits

~ 51,500 tonnes CO₂E/year (first estimate to be verified every year)

Carbon price: Approximately \$15/t - \$25/t (likely to rise)

Work with BC MoE Climate Action Secretariat

1 Unit of Carbon Offset = 1*CO₂ + 21*CH₄ + 310*N₂O (expressed as carbon dioxide equivalent emissions (CO₂E))

 CO_2 = Carbon dioxide, CH_4 = Methane, N_2O = Nitrous oxide

CARBON OFFSETS BENEFITS

~ 51,500 tonnes CO₂E

Valued at ~ \$1.1 MM to \$1.8 MM annually

Equivalent to:

- Removing 10,800 passenger vehicles or
- 4,700 homes' energy use for 1 year

http://www.epa.gov/cleanenergy/energy
resources/calculator.html#results